.webp)
🧮 Math Problem: Difference of Squares
Subject: Algebra | Grade: 9th Grade | Semester: First Term | Curriculum: Egyptian Curriculum
Problem Statement
If \(x = (\sqrt{5} - 2)\) and \(y = (\sqrt{5} + 2)\), find the value of the expression \(x^2 - y^2\) in its simplest form.
Final Answer
The value of the expression is \(-8\sqrt{5}\).
Step-by-Step Solution
Method 1: Using the Difference of Squares
A quick way to solve this is to use the difference of squares formula: \(a^2 - b^2 = (a - b)(a + b)\).
- 1. Calculate (x - y): \((\sqrt{5} - 2) - (\sqrt{5} + 2) = -4\)
- 2. Calculate (x + y): \((\sqrt{5} - 2) + (\sqrt{5} + 2) = 2\sqrt{5}\)
- 3. Multiply results: \((x-y)(x+y) = (-4)(2\sqrt{5}) = -8\sqrt{5}\)
Method 2: Direct Calculation
You can also solve this by squaring each term first and then subtracting.
-
1. Calculate \(x^2\):
\((\sqrt{5} - 2)^2 = (\sqrt{5})^2 - 2(\sqrt{5})(2) + (2)^2\)
\( = 5 - 4\sqrt{5} + 4\)
\( = 9 - 4\sqrt{5}\)
-
2. Calculate \(y^2\):
\((\sqrt{5} + 2)^2 = (\sqrt{5})^2 + 2(\sqrt{5})(2) + (2)^2\)
\( = 5 + 4\sqrt{5} + 4\)
\( = 9 + 4\sqrt{5}\)
-
3. Subtract \(y^2\) from \(x^2\):
\((9 - 4\sqrt{5}) - (9 + 4\sqrt{5})\)
\( = 9 - 4\sqrt{5} - 9 - 4\sqrt{5}\)
\( = -8\sqrt{5}\)